The Criticality Accident at Tokaimura: What We Know

T.S. Palmer and K.A. Higley Dept. of Nuclear Engineering Oregon St. University October 5, 1999

Go to school on everyone else's mistakes.

- Criticality is a sneaky, dangerous thing that should be treated with the utmost respect and control.
- Dosimetry of accidents is uncertain.
- Take everything you hear from the media with a grain of salt.

What happened?

ABC News

T O K Y O, Sept. 30 - As a uranium processing plant burned out of control in Japan, officials today told more than 300,000 people to stay indoors, closed nearby schools and told farmers to stop harvesting.

NOT!

The plant...

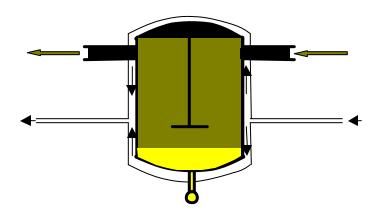
Fuel fabrication plant

- Converts UF6 gas to UO2 powder
- Primarily LEU (<5% enriched) fuel for PWRs
- 140 km NE of Tokyo
- Close to public areas
- No shielding required product is unirradiated
- Separate reprocessing plant also in Tokaimura
- No criticality accident response not a credible scenario

The situation...

Process change - 18.8% IEU for JOYU fast-breeder reactor

Not a new procedure, but hadn't been done in three years


Three inexperienced operators

- Two were either new or new to IEU campaign
- One had a few months of experience
- Operational limits are either based on highest enrichment allowed, or are changed when the process changes

The operation...

- Precipitation process involving uranium dioxide and uranyl nitrate
- Uranyl nitrate added in batches to a sedimentation tank
 - Vertical cylinder

- 50 cm diameter, dished bottom, 3 mm stainless steel walls
- 2.5 cm thick water cooling jacket around sides and bottom
- A regulator-approved manual governs operations...
 - Material must first be weighed and added to separate, small dissolution tank
 - Resultant solution transferred to sedimentation tank via piping
 - Batch size: operationally limited to 2.4 kg U

The operation...

Corporate officials approved a manual change 2-5 years ago without regulator concurrence or notification

- Process is significantly accelerated
 (30 minutes with stirrer vs. 3 hours without)
- Operators can use steel buckets and funnels to bypass the dissolution tank
- Reports indicate 5L mop buckets were being used.
- Officials would not have approved this change as UO2, nitric acid and steel can react to form toxic gases

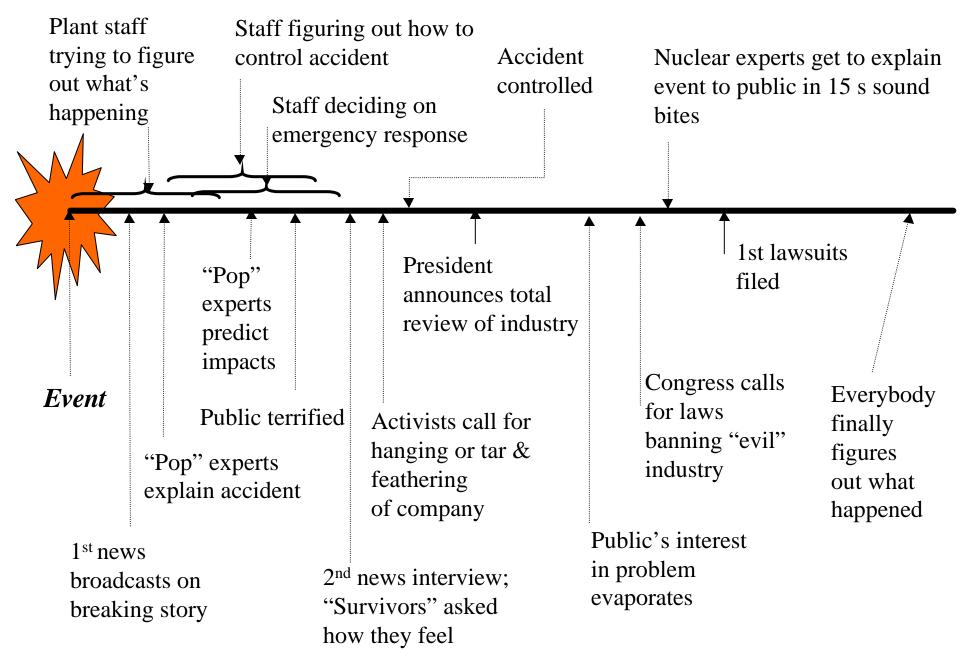
The accident...

- Wednesday, 9/29 operators poured 9.2 kg of uranium from four buckets into the sedimentation tank.
- Thursday, 9/30 operators added 6.9 kg from three more buckets.
- Highly concentrated uranyl nitrate solution went critical
 - Blue flash
 - Operators immediately began feeling sick
 - No report of radiation alarms sounding or even being installed in the area
 - Everyone left the room quickly
- Would expect oscillation between super- and sub-criticality or quick shutdown (do to loss of moderator or disassembly)
- Reaction settled into a steady state for about 20 hours.

The accident...

- Tokyo Electric Power Company rushed 880 lbs of borated material to the plant.
- They couldn't use it because they had no way to remotely add it to the tank.
- The cooling water jacket (neutron reflector) was drained between 2 am and 6 am on 10/1.
- No mechanical damage to the building, but filters did not trap the fission products -- out the stack!
- Three operators took very large doses
- **37** or 38 other people received non-trivial doses

Features similar to previous accidents


- Operators did not follow procedures.
- The plant relied heavily on administrative controls.
- Non-favorable geometries were in use.
- Plant was in off-normal condition after process change.
- Evidence of production schedule overriding safety.
- No remote operation (hand pouring)
- Poor safety culture
 - No emergency response plan
 - Criticality accident not considered credible
 - No radiation alarms(?)
 - Operation not in compliance with regulatory agency

Lessons learned

Use passively safe systems

- Favorable geometries
- Become part of existing safety culture
 - ANS Criticality Safety Division
 - DOE
 - NRC
- Double contingencies
- Solutions are notoriously difficult to deal with
- Plan for the impossible
- Never underestimate the greed of corporations and ingenuity (stupidity) of humans

A General Time-Line for a Nuclear Accident

Data Sources

Animal experiments (most of data)

Human data

- radiation therapy studies
- Japanese survivors of Hiroshima & Nagasaki
- Marshallese exposed to fallout
- victims of accidents at nuclear installations:
 - Chernobyl
 - Oak Ridge
 - elsewhere

Early Lethal Effects

- Death occurs in few weeks
- Attributed to specific high-intensity exposure
- Early symptoms occur soon after exposure

prodromal radiation syndrome

- Eventual survival time/mode of death
 - function of dose
 - not clearly defined

Syndromes

Cerebrovasuclar Syndrome

a.k.a., CNS

- >10,000 rads
- death occurs 24 48 hours
- from neurologic and cardiovascular breakdown

Gastrointestinal Syndrome

- 500 1200 rads
- death occurs in days
- from destruction of gastrointestinal mucosa

Syndromes, cont'd

Hematopoietic syndrome

- a.k.a., bone marrow death
- 250 to 500 rads
- death of blood forming organs

Causes of Death

Cerebrovascular

unclear

Gastrointestinal & Hematopoietic

- l death is due to depletion of stem cells
 - epithelium of the gut or
 - circulating blood cells
- time of death
 - population kinetics of different cell-renewal systems
 - radiation tolerance of two systems

Prodromal Syndrome

- Collection of symptoms
- Vary

- time of onset
- severity
- duration

Prodromal, cont'd

Dependent on dose

- 10's of Gy (1000's of rads)
 - onset in 5 to 15 min
 - maximum reaction in 30 minutes
 - persist for few days
 - diminish in intensity
 - Symptoms ultimately merge with fatal CNS or GI syndrome
- Severe prodromal suggests poor clinical prognosis

Prodromal Syndrome

Two main groups

- Gastrointestinal
 - anorexia, nausea, vomiting, diarrhea, intestinal cramps, salivation, fluid loss, dehydration, weight loss
- Neuromuscular
 - easy fatigability, apathy, listlessness, sweating, fever, headache, hypotension
- Presence of all symptoms indicate *supralethal* dose

Symptoms of Prodromal

NEUROMUSCULAR GASTROINTESTINAL

Signs & Symptoms Expected at LD₅₀

Easy fatigability

Anorexia Vomiting

Additional Signs After Supralethal Doses

Fever

Immediate diarrhea

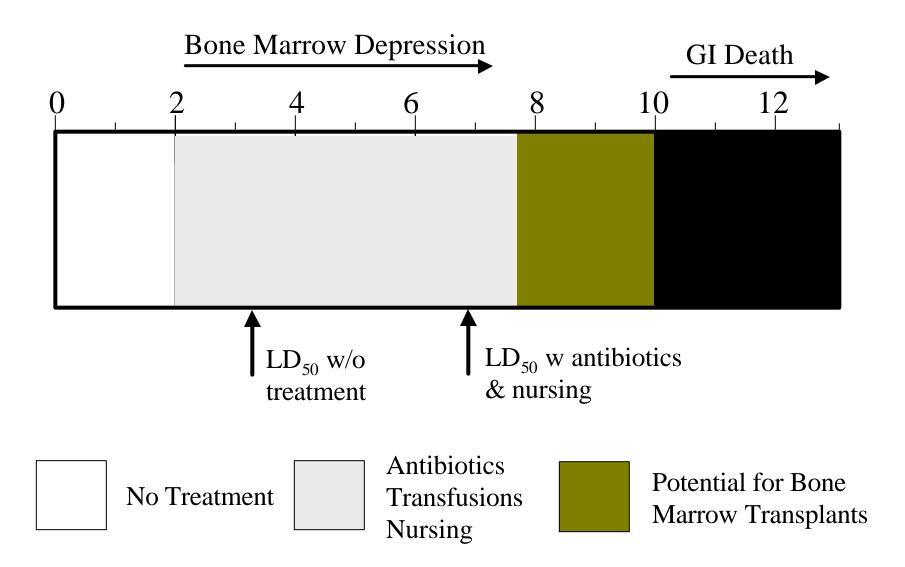
Hypotension

Treatment of Radiation Accident Victims Close to the LD_{50/60}

- < 4- 5 Gy (400 -500 rads)</pre>
 - watch patients
 - treat in response to specific symptoms (antibiotics, fresh platelets)
 - Blood transfusions should not be given "prophylatically because it would delay the regeneration of blood-forming organs"

Treatment of Radiation Accident Victims Close to the LD_{50/60}

- > 5 Gy (500 rads)
 - death from hematopoietic syndrome is possible
 - isolation and barrier nursing can be attempted
 - sterilize victim (antiseptic solutions)
 - I treat with large doses of antibiotics
 - isolate and fed sterilized foods
 - avoid infection/bleeding/physical trauma allow bone marrow to regenerate
 - studies with animals have shown LD₅₀ can be raised by factor of 2


Treatment of Radiation Accident Victims Close to the LD_{50/60}

What about bone marrow transplantation?

- Limited data set
 - 4 Yugoslav scientists got ~7 Gy
 - all grafts rejected
 - all survived anyway (in spite of transplants)
 - Chernobyl accident victims
 - 13 received bone marrow transplants
 - 2 survived
 - 1 exhibited autologous bone marrow repopulation
 - therefore, 1 successful transplant

Bone Marrow Transplantation

- Key know the dose
- Narrow window of opportunity
- < 800 rad (8 Gy) careful nursing should suffice</p>
- > 1000 rad (10 Gy) death from GI is inevitable, so bone marrow transplant won't work

U.S. Survivors of Radiation Accidents

- Last 50 y of nuclear "program"
- **70** workers in 13 separate accidents
 - medical history of survivors mirrors aging population
 - No *high* incidence of
 - shortened lifespan
 - early malignancies
 - rapidly progressing lenticular opacities
 - Probably due to small number of exposed individuals
 - e.g., 3 Gy acute dose doubles spontaneous cancer incidence
 - difficult to detect in small group of people

Implications for Japanese Incident

- Dosimetry of exposed patients unclear
- Prodromal response suggests doses in supralethal range
- Apparent "recovery" may simply be latency period before onset of more severe symptoms

Go to school on everyone else's mistakes.

- Criticality is a sneaky, dangerous thing that should be treated with the utmost respect and control.
- Dosimetry of accidents is uncertain.
- Take everything you hear from the media with a grain of salt.